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Abstract

The natural and true band profiles at heterojunctions formed by hexagonal SixGe1−x alloys are

investigated by a variety of methods: density functional theory for atomic geometries, approximate

quasiparticle treatments for electronic structures, different band edge alignment procedures, and

construction of various hexagonal unit cells to model alloys and heterojunctions. We demonstrate

that the natural band offsets are rather unaffected by the choice to align the vacuum level or the

branch point energy, as well as by the use of a hybrid or the Tran-Blaha functional. At interfaces

between Ge-rich alloys we observe a type-I heterocharacter with direct band gaps, while Si-rich

junctions are type-I but with an indirect band gap. The true band lineups at pseudomorphically

grown heterostructures are strongly influenced by the generated biaxial strain of opposite sign

in the two adjacent alloys. Our calculations show that the type-I character of the interface is

reduced by strain. To prepare alloy heterojunctions suitable for active optoelectronic applications,

we discuss how to decrease the compressive biaxial strain at Ge-rich alloys.

I. INTRODUCTION

Silicon (Si) grown in the diamond structure is the key material of modern micro- and

nano-electronic devices and integrated circuits. However, it is an indirect semiconductor, like

other group-IV elements as germanium (Ge). Active optoelectronic devices, such as light-

emitting diodes and lasers, cannot be produced using Si and Ge [1, 2]. Therefore, optical

intrachip communication cannot be realized within the Si-based CMOS technology, that

avoids the combination with III-V compounds, because of possible unintentional doping.

The semiconductor Ge possesses a direct gap only slightly above the indirect gap energy

[3]. Various strategies to make Ge a direct-gap semiconductor, therefore suitable for Ge-on-Si

optoelectronics, have been explored [4]. One favored manipulation of Ge is the application

of uniaxial or biaxial strains [5–8]. Another approach is the use of hexagonal polytypes

nH (n = 2, 4, 6) [9], in particular the 2H crystal structure, also called lonsdaleite, of Si

[10] and Ge [11]. Indeed, these latter crystals can be grown in form of nanowires [12–14].

Crystalline 2H-Ge has a direct fundamental gap, but is a pseudodirect semiconductor, since

its lowest-energy optical transitions only show a negligible dipole strength [11]. Tensile
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uniaxial strain parallel to the c-axis of the lonsdaleite geometry is predicted to lead to a

conduction band inversion and, therefore, to strong optical transitions [15]. In general,

structural and chemical perturbations to the ideal bulk crystal tend to make 2H-Ge suitable

for optoelectronic applications [16]. Indeed, alloying hexagonal Ge with Si to 2H-SixGe1−x

gives rise to strong photoluminescence, whose photon energy shifts toward higher energies

with increasing Si composition [14]. Both effects have been also predicted theoretically

[17, 18].

The energy-light conversion in light-emitting diodes (LEDs) and lasers can be improved

by quantum confinement effects, e.g. in quantum-well LEDs and lasers [19, 20]. In addition,

quantum confinement leads to a decrease of the emission wavelength. Confinement and its

effect depend on the band alignment at interfaces, that can produce discontinuities between

well and barrier materials. Moreover, during pseudomorphic growth, due to the different

lattice constants, biaxial strain is induced in the quantum well system, which also modifies

the quantum confinement and the light emission. The combination of these effects may

also help to increase the light emission efficiency of SixGe1−x alloy systems. However, its

understanding and control require the detailed knowledge of band discontinuities ∆Ec and

∆Ev of the conduction band minimum (CBM) and valence band maximum (VBM), respec-

tively, at the interface of two alloys forming the heterostructure, namely 2H-SixGe1−x and

2H-SiyGe1−y (x < y), resulting in so-called band lineups. To this end, the chemical effects

due to the different Si contents x and y and the strain effects due to biaxial growth have

to be studied. For the corresponding diamond Si and Ge alloys, theoretical studies of band

discontinuities have been carried on several decades ago [21] and have been refined over the

years [22, 23]. In the hexagonal case, only in a very recent paper the first investigation for

alloys has been proposed [24].

In this paper, we perform accurate ab initio calculations to investigate hexagonal

SixGe1−x/SiyGe1−y heterostructures. We combine density function theory (DFT), that

we use for the optimization of the atomic geometry, with approximate quasiparticle (QP)

approaches based on DFT for the determination of the electronic structure. More specifi-

cally, we compare two state-of-the-art approaches for the calculations of band structures of

solids. Moreover, we consider different band alignment methods and evaluate their perfor-

mance. The resulting natural band discontinuities are analyzed and compared with values

for the cubic case. The occurrence of realistic pseudomorphic interfaces is simulated using
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short-range superlattices composed by two different alloys. The accompanying biaxial strain

is modeled by means of the calculated elastic constants and atomic distances in the con-

strained materials. At last, we present and compare two methods to compute band offsets

based on the band deformation potentials.

II. METHODS

A. Structural, elastic and electronic properties

The atomic configurations, lattice constants and elastic coefficients are optimized with

DFT as implemented in the Vienna Ab-initio Simulation Package (VASP) [25, 26], using the

projector-augmented wave method [27] and a plane-wave cutoff of 500 eV. The Ge3d elec-

trons are treated as valence electrons. The Perdew-Becke-Ernzerhof XC functional PBEsol

revised for solids [28] is applied. For hexagonal four-atom unit cells the Brillouin zone (BZ)

integration is performed using a Γ-centered 12×12×6 k-point grid. Atomic geometries are

relaxed until the Hellmann-Feynman forces are below 1 meV/Å.

All electronic structure calculations include the spin-orbit interaction. The Kohn-Sham

band structures [29] obtained using the DFT-PBEsol functional are known to significantly

underestimate the band gap and interband-transition energies, inducing consequent uncon-

trollable errors in the band offsets ∆Ec and ∆Ev [30]. Accurate quasiparticle bandstructures

are therefore required. To avoid the numerical effort associated to QP calculations within the

GW approximation [30], we apply two approximate DFT approaches for quasiparticle band

structures that are known to yield high-quality results [31]. The first approach relies on the

XC potential of Tran and Blaha [32, 33] that combines a modified Becke-Johnson (MBJ) ex-

change potential [34] with the local density approximation (LDA) correlation [29] to give the

MBJLDA functional. The MBJLDA functional is known to yield excellent QP band energies

around the fundamental gap for cubic and hexagonal Si and Ge crystals [11, 15, 16, 18, 35].

The second approach relies on the hybrid XC functional of Heyd, Scuseria, and Ernzerhof

(HSE06) [36, 37]. The band energies resulting for 2H-Ge agree very well with the MBJLDA

results [11, 15, 16].
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B. Alloys and superlattices

Calculating band alignments for disordered-alloy supercells would imply to perform a

large number of expensive total energy and electronic-structure calculations. To avoid this

bottleneck, we simulate hexagonal SixGe1−x alloys, in first approximation, using ordered

four-atom hexagonal unit cells SinGe4−n (n = 0, 1, ..., 4). Although this choice makes possible

to directly study only three intermediate compositions x = n/4 (n = 1, 2, 3), beside pure Si

and pure Ge, it is a good compromise to speed up calculations and allow for the comparison

of different methods. The atomic arrangements of the 4-atom cells with n Si and (4−n) Ge

atoms (n = 0, ..., 4) are equivalent by symmetry, apart from the case of Si2Ge2, for which

three different bonding configurations, indicated with C1, C2 and C3 in Fig. 1(a), have to

be investigated. In C1 and C2 cells, SiGe bonds are stacked along the [0001] direction so

that Si and Ge atoms are aligned (C1), or alternate (C2). In the C3 cell the stacked bonds

consist of alternating Si-Si and Ge-Ge pairs. The structure C2 has the highest symmetry,

because the vertical bonds in the [0001] direction are always equal Si-Ge pairs, and is the

most energetically favorable. While the lonsdaleite systems Ge4 and Si4 possess the space

group P63/mmc (C4
6v), the symmetry is reduced to P3m1 (C1

3v) for all considered hexagonal

SixGe1−x ordered alloys, irrespective of the chosen inequivalent configuration of the Si2Ge2

alloy (see Fig. 1(a)). The structural, elastic, and energetic parameters needed to construct

and discuss the electronic structures and the band lineups between two SiGe alloys are listed

in Table I. All the values exhibit a monotonous variation in the composition range from pure

Ge to pure Si. Complete band structures of the SinGe4−n cells obtained using the MBJLDA

functional can be found in Refs. [14, 16, 19]. For 2H-Ge and Si1Ge3 a comparison of HSE06

and MBJLDA band energies is presented in Refs. [11, 16].

III. NATURAL BAND DISCONTINUITIES

A. Vacuum level alignment

Natural band discontinuities can be predicted from the bulk band structures of two

semiconductors and/or insulators that constitute an heterointerface. Such a prediction,

however, asks for a method to align the energy scales of the adjacent materials. The electron

affinity rule [39, 40] is based on the vacuum level alignment. The known electron affinities
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TABLE I. Structural parameters (lattice parameters a, c, and u), elastic parameters (bulk modulus

B, its pressure derivative B′, and biaxial strain modulus Y ), and total energy Etot for the seven

chemically- or symmetry-inequivalent hexagonal compounds SinGe4−n. The values of Y are taken

from Ref. [38]. In the case of Si2Ge2, values for the three atomic configurations in Fig. 1 are listed

together with their arithmetic averages.

configuration a (Å) c (Å) u B (GPa) B′ Y (GPa) Etot (eV/cell)

Ge4 3.9960 6.5920 0.3743 68 4.76 171 0.000

Si1Ge3 3.9464 6.5150 0.3742 74 4.69 189 −0.760

Si2Ge2 (C1) 3.8944 6.4375 0.3740 81 4.51 203 −1.592

Si2Ge2 (C2) 3.9002 6.4376 0.3746 81 4.54 203 −1.606

Si2Ge2 (C3) 3.9002 6.4377 0.3737 81 4.52 201 −1.596

Si2Ge2 (average) 3.8981 6.4376 0.3741 81 4.52 202 −1.598

Si3Ge1 3.8626 6.3828 0.3740 87 4.38 216 −2.398

Si4 3.8264 6.3272 0.3739 94 4.24 225 −3.249

A1 = −E1
c and A2 = −E2

c of the two nonmetals j = 1, 2 in contact, with Ej
c as the lowest

CBM measured with respect to the vacuum level, define the conduction band discontinuity

as

∆Ec = A1 − A2 . (1)

The QP gaps Ej
g = Ij −Aj and the resulting ionization energies with respect to the vacuum

level Ij = −Ej
v yield the valence band discontinuities as ∆Ev = I2 − I1.

The procedure to calculate band energies Ej
c and Ej

v with respect to the vacuum level

[41] is illustrated in Fig. 2(a) for the examples of hexagonal polytypes Ge4 and Si4 but also

SinGe4−n alloys and the cubic polytypes 3C-Ge and 3C-Si. First, the electrostatic potentials

V (z), averaged over the plane perpendicular to the z-axis, have to be extracted from the

single-particle potential of the generalized Kohn-Sham equation. To define the vacuum level,

the tail of V (z) at a surface is needed. We studied the (0001) surfaces by investigating slabs

of eight atoms, i.e., two hexagonal unit cells, in the [0001] direction, separated by vacuum

layers as thick as 12 Å. The oscillations of V (z) inside the material slabs are compared with

the electrostatic potential of the bulk calculation. The comparison allows the determination
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of Ec, but also Eind
c , and Ev with respect to the vacuum level (see Table II). The alignment

gives rise to the band lineups displayed in Fig. 2(b).

TABLE II. Positions of band extrema, Ev, Ec and Eind
c , as determined via the electron affinity

rule for SixGe1−x(0001) surfaces. For comparison the values of 3C-Ge(111) and 3C-Si(111) are also

listed. The natural band discontinuities ∆Ec = Elower
c − Eupper

c (1) and ∆Ev = Eupper
v − Elower

v

as well as that for the indirect CBM ∆Eind
c are also given. Because of the three configurations

C1, C2, C3 and the average one, four offsets are displayed for either Si0.25Ge0.75/Si0.5Ge0.5 or

Si0.5Ge0.5/Si0.75Ge0.25 heterostructures. All energies in eV.

Interface/alloy SixGe1−x Orientation Ev Ec Eind
c ∆Ev ∆Ec ∆Eind

c

3C-Ge (111) −4.535 −3.879 −3.910 −0.060 −0.283 0.070

2H-Ge (0001) −4.475 −4.162 −3.840 0.056 0.198 0.043

Si0.25Ge0.75 (0001) −4.531 −3.964 −3.797 0.152 0.317 0.029

0.170 0.324 −0.023

Si0.5Ge0.5(C1) (0001) −4.683 −3.647 −3.768 −0.026 0.101 −0.053

Si0.5Ge0.5(C2) (0001) −4.701 −3.640 −3.820 0.099 0.248 −0.015

Si0.5Ge0.5(C3) (0001) −4.505 −3.863 −3.850 0.052 0.033 −0.059

Si0.5Ge0.5(average) (0001) −4.630 −3.716 −3.812 0.034 0.026 −0.007

0.230 0.249 0.023

0.105 0.102 −0.015

Si0.75Ge0.25 (0001) −4.735 −3.614 −3.827 0.142 0.449 −0.021

2H-Si (0001) −4.877 −3.165 −3.848 0.343 0.195 −0.121

3C-Si (111) −5.220 −2.970 −3.969

For the alloy, the potential V (z) at the surface depends on the surface termination, i.e.,

the distribution of the Si and Ge atoms in the four-atom cells and hence in the surface

atomic layer. In comparison to the values in Table II and Fig. 2(b), obtained for Si1Ge3 and

a termination with the Si layer as the second one beneath the surface, other terminations

induce small variations of 58 to 61 meV for Ev, −28 to 90 meV for Ec, and −26 to 84

meV for Eind
c . These numbers prove for Si0.25Ge0.75 that, fortunately, the termination has

a negligibly small influence on the vacuum level position. Table II gathers several other
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interesting results. The ionization energy I = −Ev is rather constant for Ge-rich alloys. Its

increase to the larger value of 2H-Si, and finally to 3C-Si, Table II, begins for alloys with at

least a 50% Si content.

The absolute values of the ionization potential for the hexagonal allotropes, I = 4.48 eV

(2H-Ge) and I = 4.88 eV (2H-Si), are however significantly smaller than the experimental

values for the cubic phases 4.5 − 4.8 eV (3C-Ge) and 5.10 − 5.33 eV (3C-Si), respectively

[40, 42]. An increase of the theoretical values to I = 4.54 eV and I = 5.22 eV occurs for

3C-Ge and 3C-Si, respectively, indicating not only the agreement with measured ionization

energies but also the predictive power of the MBJLDA functional. Other calculations using

the HSE or other screened exchange XC functionals for 3C-Si give rise to even larger values

[41, 42]. Full GW calculations deliver I = 5.46 eV (3C-Si) and I = 5.05 eV (3C-Ge) when

(111)2×1 surfaces are investigated [43]. The good agreement of measured and MBJLDA

values for I and A confirm the validity of the vacuum level alignment for the determination

of natural band offsets. The latter values ∆Ev, ∆Ec and ∆Eind
c are also listed in Table II.

B. Branch point alignment

A completely different alignment concept is based on the determination of the charge neu-

trality level (CNL) or branch point (BP) energy EBP [40, 42, 44]. The use of such universal

reference level has been first suggested by Frensley and Kroemer [45]. Apart from empirical

tight-binding descriptions of the BP energies [44, 46], three different methods, which can

be combined with electronic structure calculations based on DFT and QP approaches, have

been applied in the last decades: a Green function method [47], a determination through the

zero of the integral of the density of states [42, 48], and the calculation from an approximate

weighted sum of conduction- and valence-band energies [49]. All these treatments require

only bulk calculations. Here we apply the third method, where the BP is computed as an

average over the BZ and bands: [49]

EBP =
1

2N

∑
k

[
1

NCB

NCB∑
c=1

εc(k) +
1

NVB

NVB∑
v=1

εv(k)

]
, (2)

where N is the number of k-points, and for a 2H unit cell the number of conduction bands

is fixed to NCB = 2 and that of valence bands to NVB = 4.

Band alignment obtained using the branch point method of (2) are listed in Table III
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and displayed in Fig. 3. Besides the hexagonal SixGe1−x alloys, results are also shown for

3C-Ge and 3C-Si for comparison. For the cubic crystals we applied two different numerical

descriptions of the electronic structure and BP energy. We studied the primitive diamond

cell, with the resulting fcc BZ and halved number of bands in (1), as well as the same atomic

arrangement described using a non-primitive hexagonal cell together with the corresponding

hexagonal BZ. The two procedures are indicated by 3C and 3C(hex), respectively. The first

description is more appropriate for free standing diamond crystals, while the second one,

3C(hex), better accounts the situation of band lineups at cubic [111]/ hexagonal [0001]

interfaces. We can conclude, first of all, that both approximate QP methods for band

structures, namely MBJLDA and HSE06, can be applied with comparable results. Apart

from the case of 3C-Si, the deviations are in fact smaller than 0.1 eV,. This latter value can

be used to define the uncertainty in the determination of the natural band discontinuities

∆Ev, ∆Ec, and ∆Eind
c of heterostructures between systems with the smallest difference in

composition (for the exact values see Table III). For low (high) Si content the MBJLDA

band edges are higher (lower) than the HSE06 ones. Nevertheless, the results in Fig. 3 and

Table III show that both approximate QP procedures can be applied to the SiGe systems

with qualitatively similar results. Since, however, minor numerical efforts are necessary to

perform MBJLDA calculation, we will apply in the following only this approach to describe

the true band lineups.

From a qualitative analysis of Fig. 3 and Table III we can identify a clear tendency for

a type-I heterostructure [40, 50] when hexagonal SixGe1−x and SiyGe1−y alloys with x < y

are combined. Quantum wells are formed in the layer with the lower Si content for both

electrons and holes. However, for Ge-rich alloys the heterostructure type is not very clear.

The position of the top of the valence band is weakly dependent on the composition. In

general, see Table III, the absolute values of the valence band offsets are smaller than the

conduction band ones. Our results agree qualitatively with the predictions of Wang et al.[24].

More precisely, we can compare the minimum fundamental gaps of 2H-SixGe1−x, calculated

using MBJLDA (HSE06), are Eg or Eind
g = 0.31 (0.30), 0.53 (0.56), 0.82 (0.78), 0.91 (0.82)

and 1.03 (0.95) eV from Table III and the values Eg or Eind
g = 0.30, 0.65, 0.90, 0.94, and

1.06 eV from Ref.24. The trends on the band edge position are also very similar. Only the

fact, visible in Fig. 3, that Ev is above the BP energy for the SixGe1−x alloys (apart from

the 2H-Si case) is less pronounced in Ref. [24].
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Interesting byproducts of the band lineups in Fig. 3 and Table III are the band offsets

between the 3C and 2H polytypes of Ge and Si. We can see that the description of the cubic

polytypes using the diamond cell, 3C, or the hexagonal representation strongly influences

the resulting natural band offsets. Low conduction-band states at 2/3 ΓL (diamond) are

mapped onto the Γ (hexagonal representation) point. For Si a drastic lowering of the direct

CBM in 3C(hex) occurs by about 1eV compared to the 3C case. This can be understood

by the simple band-folding arguments that the second CBM at Γ of 3C-Si(hex) at 3.179 eV

almost agrees in energy with the first CBM at Γ in 3C-Si, see Table III. It is also worth to

mention that the CBM near M in 3C-Si(hex), located at 2.15 eV, agrees with the position

of the indirect CBM near X in 3C-Si. In Ge the energy positions vary on an absolute scale

because of the resulting different BPs. The BP in 3C-Ge(hex) is by about 0.2 eV higher in

energy compared to the BP of 3C-Ge, but still below the VBM, independently of the chosen

QP approximation. In close agreement to the vacuum level alignment, the BP alignment

starting from MBJLDA and HSE06 electronic structures leads to similar heterostructure

characters for 2C/2H junctions. However, the absolute values, sometimes also the signs, of

the band discontinuities depend on the choice of the structure, 3C(hex) or 3C, and the direct

or indirect nature of the gap. We focus the discussion on the heterocharacter of 2H/3C on

the lowest conduction bands at Γ (outside Γ) for Ge (Si) and identify the conduction band

discontinuities by ∆Ec (∆Eind
c ).

Using MBJLDA (HSE06), as we can deduce from Table III, delivers ∆Ec = −0.36(−0.44)

or −0.12 (−0.19) and ∆Ev = −0.04 (0.10) or −0.23 (−0.14) eV for Ge 2H/3C or 2H/3C(hex)

heterostructures, while the corresponding values for Si heterostructures are ∆Ec = −0.02

(−0.12) or −0.07 (−0.06) eV and ∆Ev = 0.24 (0.31) or 0.16 (0.12) eV for 2H/3C(hex) or

2H/3C. Consequently, the heterojunction character varies somewhat with the selected QP

approximation and the choice of the unit cell for the calculation of the approximate BP

energy. Within the MBJLDA approximation, the heterocharacter tends generally toward

type-I. Only the Si-based 2H/3C(hex) junction exhibits a type-II character. These findings

are qualitatively similar to the results using the vacuum-level aligment shown in Fig. 2.

Using the HSE06 functional for the determination of the band structures, the 2H/3C(hex) Ge

junction has a type-I lineup, while a type-II interface results for the Si case. These findings

are in agreement with other HSE06 calculations for ’true’ band offsets using supercells [51].

The uncertainties in the prediction of the type of 3H/3C or 2H/3C(hex) interfaces using
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the natural band lineup remember similar findings for InP and GaAs [52]. Due to fluctuations

in the bond stacking during growth of GaAs quantum wires indeed such quantum wells

appear, where, however, the heterostructure type I and II is under discussion [53, 54]. The

same statement is valid for other calculations of the heterocrystalline interface 2H/3C of

silicon using several approaches. The band alignment method tends to type-II band lineup

[24, 55, 56], whereas hexagonal/cubic Si superlattice (see also below) show type-I band

offsets [9, 51, 57]. In the case of Ge the situation is more difficult, because of the metallic

character of the material in DFT [9]. Moreover, the band alignment method (type-II) [24]

and the superlattice method (type-I) [51] again suggest opposite heterostructure characters.

For the BP position using the VBM as a energy zero we find EBP = −0.22 (−0.30), −0.03

(−0.06), −0.26 (−0.21), 0.11 (0.00), 0.35 (0.31), and 0.27 (0.12) eV for 3C-Ge, 3C-Ge(hex),

2H-Ge, 2H-Si, 3C-Si(hex) and 3C-Si, respectively, using MBJLDA (HSE06). In the case of

3C-Si, there is a good agreement with other calculations of EBP = 0.29 [41], 0.16 [43], 0.03

[44], 0.36 [47], and 0.2 eV [48]. The BP positions in 3C-Ge are EBP = −0.28 [43], −0.28 [44],

0.18 [47], and 0.1 eV [48]. Despite similarities with the gap results of Wang et al. [24], a clear

discrepancy appears for the positions of the CNL with respect to the VBM for both 3C- and

2H-Ge. In the latter references SOC has not been included. The tendency predicted here

to find negative BP values for Ge is confirmed both by ab initio GW as well as empirical

tight-binding calculations. Such a prediction of a BP energy in a band may have significant

consequences for the occurrence of p-type accumulation at Ge surfaces, as demonstrated for

the surface electron accumulation of In compounds, e.g. In2O3 [58]. The BP positions allow

to define a natural valence band discontinuity ∆Ev between 3C-Ge and 3C-Si or 3C-Ge(hex)

and 3C-Si(hex) of ∆Ev = 0.49 (0.42) eV or 0.38 (0.37) eV (see Fig. 3). These values are

close to that ∆Ev = 0.38 eV of GW calculations [43] and that ∆Ev = 0.34 eV measured by

photoemission [59].

C. Comparison of alignment methods

Tables II and III, as well as Figs. 2(b) and 3, show the natural band discontinuities ∆Ev,

∆Ec and ∆E ind
c of MBJLDA band structures, derived with different alignment procedures,

namely the vacuum level alignment and the BP alignment. The resulting heterojunction

behaviors agree qualitatively, but exhibit quantitative differences. The smallest deviations
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occur for the offsets of the VBM. For Ge(Si)-rich alloy heterostructures the two ∆Ev values

differ by −9 meV (23 meV). The differences increase toward 88 meV (−81 meV) including

alloys with the same numbers of Si and Ge atoms in the heterojunction. The discrepancies

are similar for the CBM offsets and increase for the CBMind offsets. For more Ge-rich

heterostructures the direct CBM offsets vary by −19 or −52 meV, while for Si-rich junctions

the indirect CBM offsets deviate by 81 or −24 meV. All these deviations are smaller than

the accuracy of the underlying approximate QP methods for the gaps, that we estimate to

be smaller than 0.1eV [30].

Interestingly, both alignment procedures also nearly give the same natural band lineups

for the two heteropolytypic structures 3C/2H (see Figs. 2(b) and 3, as well as Tables II and

III). Results of both alignments tend toward a type-I heterocharacter with deep electron

and flat hole quantum wells in the region of the 2H polytype. In the Si case the agreement

is complete for ∆Ev and ∆Ec. Only the positions of the indirect CBM differ by 81 meV. In

the Ge case small deviations of only 39 meV (∆Ev), 31 meV (∆Ec) and 31 meV (∆Eind
c )

are visible. The minor deviations of the band discontinuities between two polytypes 3C

and 2H, as well as between two hexagonal alloys suggest the applicability of both alignment

procedures. Nevertheless, we focus in the following on the BP alignment because it relies

only on bulk calculations.

IV. TRUE BAND LINEUP

A. Interfacial biaxial strain

A heterostructure 2H-SixGe1−x/2H-SiyGe1−y (x < y) may be fabricated by controlled

growth in the direction of the c-axis. For not too large differences in x and y lattice pa-

rameters, pseudomorphic epitaxial growth should be possible. Neglecting the interface mix-

ing of regions with different compositions, the main effect of the pseudomorphic growth

will be biaxial strain at the junction, resulting in compressive strain of the alloy with

lower Si content and tensile strain of the Si-richer mixed crystal. Since the maximum

lattice mismatch f = 2a(x)−a(y)
a(x)+a(y)

amounts to 4.3 % (see Table I), the resulting mismatch of

SinGe4−n/Sin+1Ge3−n (n = 0, 1, 2, 3) interfaces is approximately 1 %, i.e., still in the valid-

ity range of Hooke’s law. Setting the in-plane lattice constant of the heterojunction equal
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to a, assuming pseudomorphic growth, the resulting biaxial strain on the two sides of the

heterointerface SixGe1−x/SiyGe1−y amounts to

ε‖(x/y) =
a− a(x/y)

a(x/y)
(3)

where a(x) and a(y) are the lattice constant of the two bulk alloys. The band energies

are shifted from the values Ev, Ec and Eind
c for the unstrained alloys to the values Ev(ε‖),

Ec(ε‖), and Eind
c (ε‖). In the framework of the validity of the Hooke’s law [50] a linear strain

dependence holds (ν = v, c, cind):

Eν(ε‖) = Eν + Ξνε‖. (4)

The band deformation potentials listed in Table IV have been computed from the MBJLDA

band energies of the unstrained and strained alloys given in the same table. Thereby, an

arithmetic average of the deformation potentials arising for ε‖ = ±0.01 is used, in order to

avoid nonlinear effects beyond the Hooke’s law. Since the band energies are computed with

respect to the BP energy (2), the resulting deformation potentials have to be interpreted as

the deformation potentials of the energy difference between band extrema and BP energy.

The general effects of a biaxial strain on the band edges, measured with respect to the

BP energy zero, are illustrated in Fig. 4. In the limit of compressive strain, the a-lattice

constant is shortened and the band gaps at Γ are increased, although, in addition to the

CBM, Ec, also the VBM, Ev, is shifted away from the BP. In the case of tensile strain the

opposite shifts are visible, in particular the gaps get shrunk. Interestingly, the conduction

band minima along the LM line hardly vary with strain, at least with respect to the BP used

for band alignment. Moreover, the character of the heterostructure (type I or II) is rather

independent of the biaxial strain. The type-I character of the 2H/3C heterostructures (with

MBJLDA) with 2H as quantum-well and 3C as barrier material, known from the natural

band lineup, is conserved. The indirect character of the band gap is more pronounced under

compressive strain, but disappears for tensile strain.

To predict ‘true’ band discontinuities by estimating the biaxial strain at SixGe1−x/SiyGe1−y

interfaces, we use the band deformation potentials in Table IV. However, they are calcu-

lated with respect to the BP, which cannot be measured directly. For comparison with

measurements it is better to study the deformation potentials of the gaps, Eg = Ec−Ev and

Eind
g = Eind

c −Ev. In the cubic limit biaxial deformation potentials Ξ = −13.15 (−21.45) eV
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TABLE IV. Energies of band extrema Ev, Ec and Eind
c measured to the BP position of SiGe

alloys and polytypes under biaxial strain −1, 0, +1 %. The MBJLDA approach is applied. The

deformation potentials resulting from the strain-induced band displacements are also given. All

values are in eV.

Material Compressive Zero Tensile Resulting

biaxial strain −1% biaxial strain 0% biaxial strain 1% deformation potential

SixGe1−x Ev Ec Eind
c Ev Ec Eind

c Ev Ec Eind
c Ξv Ξc Ξind

c

3C-Ge 0.248 1.197 1.031 0.221 0.929 0.877 0.195 0.656 0.715 −2.65 −27.15 −15.80

3C-Ge(hex) 0.05 0.834 0.676 0.027 0.683 0.652 0.004 0.525 0.628 −2.30 −15.45 −2.36

2H-Ge 0.321 0.788 0.876 0.260 0.566 0.888 0.213 0.364 0.897 −5.40 −21.15 1.07

Si0.25Ge0.75 0.334 1.003 1.088 0.266 0.796 1.046 0.223 0.647 1.003 −5.55 −17.83 −4.25

Si0.50Ge0.50(C1) 0.132 1.354 1.045 0.083 1.119 0.998 0.034 0.899 0.949 −4.90 −22.75 −4.80

Si0.50Ge0.50(C2) 0.173 1.412 1.046 0.120 1.181 1.001 0.067 0.965 0.959 −5.30 −22.40 −4.30

Si0.50Ge0.50(C3) 0.360 1.124 1.012 0.296 0.938 0.951 0.231 0.744 0.895 −6.45 −19.00 −5.85

Si0.50Ge0.50(average) 0.221 1.296 1.034 0.166 1.079 0.983 0.110 0.869 0.934 −5.55 −21.38 −5.00

Si0.75Ge0.25 0.126 1.573 1.023 0.054 1.354 0.962 −0.005 1.139 0.906 −6.55 −21.68 −5.95

2H-Si −0.043 1.827 0.975 −0.111 1.600 0.917 −0.170 1.372 0.859 −6.35 −22.75 −5.80

3C-Si(hex) −0.346 2.116 0.906 −0.352 1.898 0.898 −0.360 1.673 0.910 −0.68 −22.13 0.17

3C-Si −0.236 2.945 0.951 −0.266 2.913 0.984 −0.293 2.880 1.000 −2.85 −3.30 2.45

and Ξind = 0.06 (0.85) eV result for 3C-Ge (3C-Si) but using the hexagonal BZ to describe

the high-symmetry points Γ, L, and M. Our estimates of deformation potentials of 3C-Ge at

the Γ and L points of the fcc BZ deliver Ξ(Γ) = −24.5 eV and Ξ(L) = −13.15 eV. Because

of the projection of the L point in the fcc BZ onto the Γ point of the hexagonal BZ, the in-

direct gap value in the cubic case Ξ(L) should be comparable with the Ξ = −13.15 eV value

estimated for the direct gap of 3C-Ge, using a hexagonal k-point sampling. Independently

of the description, in diamond-Si the indirect gaps possess positive deformation potentials

of 5.30 eV for 3C-Si and 0.85 eV for 3C-Si(hex). Our estimates approach measured de-

formation potentials at the zone boundaries [60]. In the hexagonal alloys the deformation

15



potentials Ξ for the direct gaps relatively weakly vary with the composition around Ξ = −21

eV. Only for x = 0.25 a slightly smaller absolute value with Ξ = −17.83 eV is estimated.

The situation is completely different for the deformation potential of the lowest indirect

gap. Because of similar values of the CBM with mixed sp character and the p-like VBM the

gap deformation potentials remain small. An exception appears for 2H-Ge, for which the

indirect gap deformation potential tends to be small of 6.5 eV but positive.

B. Interface influence

The band lineups of conduction and valence bands can be simulated for supercells con-

taining an itterface between the two materials, forming a heterostructure. In general, the

theoretical modeling of interfaces is difficult because of possible lattice mismatches, crystal

structure misfits, heterovalencies, chemical and structural disorder, and presence of defect

states. In the case of hexagonal SixGe1−x alloys, grown pseudomorphically on top of each

other, one can focus on the lattice mismatch and the configuration of Si and Ge atoms on

the atomic sites at the heterointerface. A powerful tool is the superlattice method with su-

perlattice structures based on hexagonal SixGe1−x/SiyGe1−y heterostructures in the [0001]

direction building a superlattice unit cell.

In the simplest case we can match two hexagonal unit cells of SinGe4−n and Sin+1Ge3−n

(n = 0, 1, 2, 3), joining the surfaces perpendicular to the c-axis to create a hexagonal super-

cell of (SinGe4−n)1 (Sin+1Ge3−n)1(0001) with an in-plane lattice constant a and a c-lattice

constant that is approximately twice the value of the corresponding lattice constant of the

isolated hexagonal alloys. The resulting superlattice represents a hexagonal crystal with

eight atoms, (2n+ 1) Si and (7−2n) Ge atoms in the unit cell with the lattice parameters a

and c. The highest complexity of the atomic arrangements in such a superlattice cell appears

if a stoichiometric alloy Si2Ge2 is included. Because of the existence of the three configura-

tions C1, C2, and C3 (see Fig. 1(a)) several arrangements are possible at the interface. We

consider three different atomic arrangements at the heterointerface of Si2Ge2 with Si1Ge3

to simulate Ge-rich junctions, as shown in Fig. 1(b). We start with a minimum Si-Si bond

distance along the c-axis, e.g. configuration C1, and then we consecutively move out one of

the Si atoms in order to generate a maximum of Si-Si atomic separations, e.g. configuration

C3 from Fig. 1(b). Although the difference between these atomic configurations is very small
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in terms of the resulting lattice parameters, the actual atomic arrangement has a strong im-

pact on the band-gap energy and the position of the CBM in k-space. A direct-indirect gap

crossover occurs in the set of (Si1Ge3)1(Si2Ge2)1(0001) superlattices. A similar procedure

is applied for the (Si2Ge2)1(Si3Ge1)1(0001) superlattices. For the two other superlattices

(Ge4)1(Si1Ge3)1(0001) and (Si3Ge1)(Si4)1(0001) only one configuration has to be studied.

All these short-period superlattice geometries have to be optimized by atomic relaxations

and minimization of the total energy. The resulting lattice parameters a and c are listed

in Table V. In the cases of presence of Si2Ge2 alloys we only list the average values. These

a-parameters, together with the a-lattice constants in Table I, allow to define the biaxial

strain ε‖ (3) at the interface between two alloys.

The lattice constants and strains found for short-period superlattices should be evaluated

in comparison with results of calculations for heterostructures with thicker layers. In fact,

the elastic energy [50] of a superlattice of pseudomorphically grown hexagonal materials has

to be minimized. For thicker layers of SixGe1−x and SiyGe1−y, with thickness D(x) and

D(y), one finds as the minimum condition for the common in-plane lattice constant:

a =
D(x)Y (x)a(x) +D(y)Y (y)a(y)

D(x)Y (x) +D(y)Y (y)
, (5)

using the biaxial moduli Y = C11+C12−2(C13)
2/C33 and the in-plane lattice constants a(x)

and a(y).This condition defines biaxial strain of the two materials forming the heterostruc-

ture,

ε‖(x) =
D(y)Y (y)

D(x)Y (x) +D(y)Y (y)

a(y)− a(x)

a(x)
,

ε‖(y) =
D(x)Y (x)

D(x)Y (x) +D(y)Y (y)

a(x)− a(y)

a(y)
. (6)

In the case of equal thicknesses D(x) = D(y), the mismatch in the elastic properties Y (x) 6=

Y (y) destroys the almost (apart from sign) symmetric distribution ε‖(x) ≈ −ε‖(y). If

one layer is much thicker than the other one, e.g. D(y) � D(x), it holds that a = a(y),

ε‖(x) = a(y)−a(x)
a(x)

and ε‖(y) = 0. In the case D(x) = D(y), employing the a and Y parameters

from Table I, expressions (5) and (6) deliver similar common lattice constants and biaxial

strains in Table V as in the case of short-period superlattices. The common lattice constant

of the heterostructure (5) and the strains on both sides of the interface (6) tend, indeed, to

approach the symmetric case a = 1
2
[a(x) + a(y)] and ε‖(x) ≈ −ε‖(y).
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TABLE V. Results of the superlattice approach and the macroscopic treatment using elastic mod-

uli for four different heterostructures. Lattice constants a and c (in Å), biaxial strain ε‖ (in %),

and band energies Ev, Ec, and Eind
c (in eV) estimated with the deformation potentials in Table IV.

For the Si2Ge2 alloys energies are computed for the configurations C1, C2, C3 and their aver-

age. Therefore, four different sets of band energies appear for Si1Ge3/Si2Ge2 and Si2Ge2/Si3Ge1

heterostructures.

hetero- super. app. macro. app. super. app. macro. app.

structure a c ε‖ a ε‖ Ev Ec Eind
c Ev Ec Eind

c

Ge4 −0.96 −0.65 0.319 0.763 0.875 0.300 0.710 0.880

Ge4/Si1Ge3 3.9577 13.0676 3.969

Si1Ge3 0.29 0.60 0.253 0.777 1.033 0.240 0.720 1.020

Si1Ge3 −0.77 −0.61 0.316 0.944 1.078 0.307 0.918 1.019

Si1Ge3/Si2Ge2 3.9161 12.9289 3.922

Si2Ge2 0.41 0.57 0.063 1.020 0.977 0.055 0.992 0.969

0.097 1.070 0.983 0.089 0.976 0.977

0.268 0.791 0.927 0.257 0.821 0.918

0.143 0.960 0.962 0.133 0.930 0.955

0.117 1.241 1.022 0.115 1.236 1.021

0.154 1.311 1.024 0.153 1.292 1.023

0.334 1.035 0.982 0.336 1.031 0.981

Si2Ge2 −0.52 −0.50 0.202 1.195 1.009 0.201 1.186 1.008

Si2Ge2/Si3Ge1 3.8796 12.8128 3.880

Si3Ge1 0.44 0.47 0.026 1.259 0.937 0.024 1.249 0.935

Si3Ge1 −0.49 −0.48 0.090 1.459 0.993 0.087 1.452 0.992

Si3Ge1/Si4 3.8435 12.7039 3.844

Si4 0.45 0.46 −0.137 1.501 0.892 −0.139 1.487 0.891

C. Band edges and confinement in strained heterostructures

The ab initio calculations of the atomic geometry of the (SinGe4−n)1/(Sin+1Ge3−n)1(0001)

(n = 0, 1, 2, 3) superlattices can be also combined with MBJLDA calculations of the elec-
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tronic structure. However, the resulting band structures in k-space cannot be immediately

related to the band edges Ev, Ec, and Eind
c versus a real space coordinate along the layer

stacking. An approximate approach to the band-edge profiles through the heterointerface

in z-direction is possible by calculating the local site-projected density of states (PDOS).

The PDOS is estimated by projection of the DOS onto each atom and by plotting the band

edges around the local fundamental gap versus the z-coordinate of the atomic layer [61–63].

Results for the four studied superlattices, however, indicate that the projection technique

is not applicable. The superlattice layers are too thin. They mainly consist of interface

regions, so that nearly constant band edge positions on both sides of an interface cannot be

determined.

For that reason we also studied superlattices with significantly thicker layers. A method

described in detail in Ref. [64] is applied. The electronic structure results are displayed

in Figs. 5 and 6 for superlattices with 32 atomic layers, more precisely 16 atomic lay-

ers on each side of an interface, in one superlattice unit cell. In other words hexagonal

(SinGe4−n)4(Sin+1Ge3−n)4(0001) superlattices with n = 0, 1, 2, 3 are studied. The result-

ing band structures are shown in Fig. 5 together with a background that illustrates the

band regions of the projected band structure of the hexagonal barrier materials consisting

of Sin+1Ge3−n four-atom unit cells. The BP alignment is applied to align the superlattice

and the projected band structures in each panel of Fig. 5. The VBM of the superlattices is

used as energy zero for all superlattices.

The direct gaps at Γ of the four superlattices are 0.43 (n = 0), 0.74 (n = 1), 1.26 (n = 2),

and 1.55 (n = 3) eV larger than the direct gaps of the hexagonal SinGe4−n materials given

in Table III. This observation indicates the presence of quantum confinement of electrons

and holes at Γ in the Ge-richer superlattice layers, or type-I heterostructure behavior of

carriers in these regions, in agreement with the natural band lineups of Fig. 3. For the

indirect gaps, we report a gap increase of 0.62 (n = 0), 0.77 (n = 1), 0.94 (n = 2), and 1.00

(n = 3) eV for the CBM at the M point of the superlattice BZ, showing that confinement

is less pronounced. Electron confinement is present in the direct-gap n = 0 and n = 1

superlattices, while the indirect-gap n = 2 and n = 3 superlattices tend to smaller values,

clearly visible for the (Si3Ge1)4(Si4)4(0001) superlattice, where the projected bulk Si band

structure is below the superlattice CBM at M. These findings are in agreement with Fig. 3,

which clearly suggests hole confinement in the Ge-rich regions when the MBJLDA approach
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is applied. We observe that the energy distance between the band extrema of the superlattice

bands and the projected band structure are somewhat smaller than the values found for the

natural band discontinuities in Fig. 5 and Table III. The hole confinement in the Si-poorer

alloy regions of all superlattices is visible. From the distance to the shaded region one may

conclude that the deepness of the corresponding hole quantum well increases with rising

Si composition in the superlattice. For electrons the situation is more complex. For Si-

poor compositions the superlattices are direct semiconductors and localized electron states

appear at Γ. This behavior at Γ continues in Si-richer superlattices. However, the true

conduction band minima appear at M in the superlattice BZ. The confinement of electrons

at Γ in the Ge-richer layers is hardly visible. Summarizing, the band structures of the Ge-

rich superlattices clearly show a type-I heterobehavior using MBJLDA bands, as suggested

by the natural band lineups in Fig. 3. The situation for lower Ge contents is less clear.

This tendency for type-I heterobehavior is not only indicated by the lowest conduction

band and highest valence band in the fundamental gap of the barrier material in the Ge-

richer direct-gap superlattices in Fig. 5. A pronounced type-I (type-II) heterostructure

behavior of the Ge-rich (Si-rich) superlattices is also demonstrated by the wave function

squares of the superlattice Bloch functions of the lowest conduction and highest valence

band, as shown in Fig. 6. In Ge-richer superlattices both wave functions, for electrons and

holes at Γ, are localized in the Ge-rich layer of the superlattice structure, clearly representing

a type-I behavior. One may speak about a multi-quantum well structure with electron and

hole wells in the Ge-rich layers, while Si-richer layers form barriers for both carrier types.

There is a complete change in Fig. 6 for the Si-richer superlattices. Hole and electron wave

functions are now localized in different regions of the superlattice. A type-II heterojunction

behavior is suggested by the wave function localization. The holes remain localized in the

Si-poorer layers, while electrons are more likely to be in Si-richer layers.

In order to determine the pure effect of the biaxial strain on the band lineups between

the two different materials, biaxial strains are extracted for short-period superlattices with

layers of equal thickness in the unit cell and listed in Table V. These strains (3), together

with the deformation potentials of Table IV, lead to band edge positions (4) with respect

to the BP as energy zero. They lead to the plots of Fig. 7 for the band positions and band

discontinuities. We note that in Fig. 7(a) the strains directly extracted from the ab initio

optimized geometries of the short-period superlattice are used, while the biaxial strains (6)
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estimated by means of the elastic moduli Y and the in-plane lattice constants a of the un-

strained alloys, both in Table I, are applied in Fig. 7(b). Qualitatively, both Figs. 7(a) and

7(b) show the same band lineups with pronounced quantum wells for holes in the Ge-rich

material layer. However, in the light of the goal to fabricate hexagonal SixGe1−x heterostruc-

tures, which are suitable for active optoelectronic devices, Fig. 7 exhibits a somewhat more

pronounced tendency for hole confinement compared to the natural band lineups in Fig. 3.

The conduction band offsets guaranteeing a type-I heterostructure are generally reduced

and all the heterojunctions with more silicon mixed-in into the well, as well as barrier mate-

rial, exhibit a clear tendency to become indirect semiconductors, with the lowest conduction

band minimum located at the LM line in k-space or M point in the superlattice BZ. Only

the hexagonal Ge/Si0.25Ge0.75 heterojunction, and perhaps also the Si0.25Ge0.75/Si0.5Ge0.5

interface, represents a type-I heterostructure, however, with two deficiencies. (i) The barrier

for the electrons and, therefore, their quantization in the pure 2H-Ge or Si0.25Ge0.75 layer is

much smaller compared to the result for natural alignment in Fig. 3. (ii) The lowest-energy

optical transitions inside 2H-Ge still possesses only a small oscillator strength [16]. In order

to improve the situation for the construction of a heterostructure laser based on a hexagonal

SixGe1−x/SiyGe1−y alloy system, one has to find a way to reduce the compressive biaxial

strain in the Ge-richer layer. One option to do so is to increase the thickness D(x) compared

to D(y). Then, according to (6) the compressive strain |ε‖(x)| can be reduced in comparison

to the tensile strain |ε‖(y)|. Together with the condition to have a reasonable strength of

the optical transitions [16], the heterostructure Si0.25Ge0.75/Si0.5Ge0.5 could be a promising

system if, indeed, a larger thickness of the Ge-rich layer is reached. In Fig. 7 average values

are presented in the Si2Ge2 case. Figure 8 shows the band lineups for a situation where in

the heterostructures the alloy with y = 0.5 is realized by only one configuration, C1, C2,

or C3 (see Fig. 1). The hole wells appear to be in the Ge-rich regions independent of the

atomic configuration. However, the position of the CBM varies with the atomic distribu-

tion corresponding to the Si-richer layer. A type-I (with C1 and C2) or type-II (with C3)

heterostructure character appears in dependence of the actual atomic configuration.
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V. SUMMARY AND CONCLUSIONS

The electronic properties of heterostructures made of hexagonal SixGe1−x alloys have

been studied by means of ab initio calculations of atomic geometries, based on density func-

tional theory and using approximate quasiparticle approaches for the band structures. Two

different alignment procedures to construct natural band lineups are tested, together with

the direct calculation of various hexagonal unit cells to describe alloys and heterojunctions.

We applied elastic theory to model the influence of biaxial strain, in particular in the case

of pseudomorphically grown heterosystems.

The natural band lineups have been investigated comparing the branch point and vac-

uum level alignments. Moreover, the influence of the underlying approximate quasiparticle

method, namely the MBJLDA or HSE06 functionals, is considered. We can conclude that

the selection of one of these approximation has a negligible effect in terms of the general

accuracy of the band offsets ∆Ec and ∆Ev. The different alignment methods lead also to

similar results, so that we decided to choose the branch point alignment, that only requires

bulk calculations. Calculations for diamond Si and Ge allowed to validate the values of

the branch point energies and the natural band discontinuities, comparing with experiemnts

and previous calculations. Consequences of the negative branch points in Ge-rich alloys have

been predicted for carrier accumulation at hexagonal Ge and alloy surfaces.

The true band offsets appearing at almost pseudomorphic heterointerfaces have been in-

vestigated for different thicknesses of the alloy layers composing the heterojunction. The

limit of thin layers has been studied within a superlattice approach. It gives rise to com-

pressive (tensile) biaxial strains of order of ±0.5 % in the Ge-richer (less Ge-rich) alloys.

However, for larger thicknesses, but always in the range of validity of elastic theory, similar

strains result from the minimization of the elastic energy of the junction. The strain profiles

with compressive strain at the Ge-richer side and tensile strain at the Si-richer side tend

to deepen the hole quantum wells, and flatten the electron quantum wells in the Ge-poorer

layers. Also the type-I character of the heterostructures is reduced. This tendency is ac-

companied by a transition of the heterostructure from a direct semiconductor to an indirect

one with rising Si composition. These results are confirmed by electronic structure calcula-

tions of the band structures and the wave functions, performed for superlattices with thicker

layers. Consequently, we propose to achieve a reduction of the compressive strain at the
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Ge-rich side to make the pseudomorphic heterojunctions suitable for active optoelectronic

applications.
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FIGURE CAPTIONS
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of Monkhorst-Pack [23]. The value of M has to be varied
according to the number of layers in stacking direction of the
II-VI polytypes. We use M = 8, 6, 4, and 2 for the 3C, 2H, 4H,
and 6H polytypes, respectively. The internal atomic positions
of 2H, 4H, and 6H polytypes were fully relaxed through
minimization of the quantum-mechanical forces on each atom
to be below 5 meV/Å. The total energy was converged to
within 0.5 meV/cell. The accuracy of the above procedure has
been well tested in a previous work [13].

It is known that for semiconductors or insulators, the
band gap calculated within the local density approximation
or generalized gradient approximation (GGA) underestimates
severely the experimental energy gap. To overcome this band-
gap problem, we used the recent LDA-1/2 method proposed by
Ferreira et al. [24,25]. This method meets a precision similar
to that of GW approximation [26], which attempts to fix the
electron self-energy deficiency of DFT [27].

III. STRUCTURES AND ENERGIES

In order to determine the equilibrium geometries we
minimize the total energy E with respect to the atomic
coordinates. The independent structural parameters of 2H that
need to be determined are V and u, where V is the volume
of the unit cell given by a and c are the hexagonal lattice
constants, and u is the dimensionless cell-internal parameter,
which denotes the position of the second atom along the c axis.
The Murnaghan equation of state [28] is applied to determine
the equilibrium energy E = E(V ) and, thus, the equilibrium
volume per II-VI pair Vpair =

√
3

2 a2 c
p

, the isothermal bulk
modulus B0, and its pressure derivative B ′

0.
For ideal, nondeformed bonding tetrahedra it holds c/a =√

8/3 and u = 3/8. A deviation from these values corresponds
to a change in the bond angle away from the ideal tetrahedral
one. These parameters characterize the atomic geometry
and the crystal field by the deviations [2c/(pa) − 1.633]
and [u − 0.375]. The influence of the optimized u on c/a
and V , in general, is very small. However, its small deviation
can significantly modify the local electronic properties and
internal electric fields due to the spontaneous polarization
in hexagonal polytypes [29–33]. This especially holds for
heterocrystalline junctions and superlattices [34,35], or the
presence of interfaces between two polytypes of one-and-the-
same compound in the [0001] direction. In the 4H and 6H
polytypes more, three or five, internal-cell parameters have
to be optimized. Their influence on the properties is however
weaker than that of u in the 2H case.

The results of the structural optimizations for the four
polytypes and the three compounds under consideration are
given in Table I. The polytypes are ordered according to
their hexagonality, defined by the ratio of the number of the
hexagonal bilayers to the total number of bilayers per unit
cell (cf. Fig. 1). Between the most extreme polytypes 3C with
h = 0% and 2H with h = 100%, one finds the intermediate
polytypes 6H with h = 33% and 4H with h = 50%. For
2H we find good agreement between the calculated and the
experimental lattice constant a, apart from the rather weak
underestimation of a, a well know feature of the LDA.
However, the ratio c/a of the wurtzite structure 2H agrees
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FIG. 1. (Color online) Stick-and-ball models of 3C and pH (p =
2, 4, 6) of ZnX polytypes. Zinc: brown spheres, X (X = S, Se, and
Te): gray spheres. The stacking sequence of the cation-anion bilayers
are indicated by the symbols A, B, or C. Primitive unit cells are shown
for the pH polytypes, while a nonprimitive hexagonal cell is depicted
to illustrate the 3C symmetry.

perfectly with experiment. The deviations do not exceed 1%
(see Table I). The error introduced by the LDA due to the
overbinding effect is expected to be very similar for the other
hexagonal polytypes 4H and 6H. The underestimation of the
lattice constants by less than 1% does not play a role since we
consider only the relative variations of !a and !c using ZB
values as reference in Table II.

In Fig. 2(a) the lattice constant ratio 2c/(pa) is plotted
versus the percentage of hexagonality h of the polytype.
For the three II-VI compounds the cell shape increase
monotonously with h along the row 2H, 4H, 6H, and 3C.
The variation with the anion X = S, Se, and Te as a function
of hexagonality reflects the chemical trend with respect the
anion size and the average of the bond ionicities 0.673 (0.677)
ZnS/0.597(0.639) ZnSe/ZnTe(0.684) [43] ([44]). The same
holds for the deviation of u from its ideal value u = 0.375, in
the wurtzite (2H) case with u = 0.3745, 0.3744, and 0.3742
for ZnS, ZnSe, and ZnTe, respectively.

These findings are in agreement with other predictions for
the ZB-WZ polytypism in semiconductors. Only slightly larger
values of u = 0.375 for ZnX compounds have been found by

TABLE II. Relative deviations (with inclusion of the finite cell-
internal parameters) of lattice constants from those of the most stable
3C polytype (in percent) from Table I.

Compound Polytype !c/c !a/a ! 2c
pa

/ 2c
pa

ZnS 2H 0.32 0.16 0.48
4H 0.12 0.13 0.25
6H 0.10 0.10 0.21

ZnSe 2H 0.52 0.07 0.60
4H 0.34 0.05 0.39
6H 0.21 0.00 0.21

ZnTe 2H 0.47 0.30 0.78
4H 0.20 0.21 0.41
6H 0.12 0.09 0.21

245308-3

Si
0.
25

G
e0

.7
5

Si
0.
5G

e0
.5

C3C2C1 Si
0.
5G

e0
.5

(b)

(a)

FIG. 1. (a) The side view is shown for three possible symmetry-inequivalent bond stackings and

atomic configurations C1, C2 and C3 of the hexagonal Si2Ge2 alloy. (b) The crystal structure of

three different atomic arrangements of hexagonal Si2Ge2 alloys (C1, C2, and C3 configurations)

as heterointerface with Si1Ge3 to simulate Ge-rich junction. The yellow and gray balls represent

Si and Ge atoms, respectively. The nominal interfaces are indicated by dashed horizontal lines

between two unit cells stacked in c-axis direction.
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FIG. 2. Alignment procedure and resulting band lineup for heterostructures consisting of hexagonal

SixGe1−x alloys. For comparison also results for the 3C polytypes oriented in [111] direction are

given. The MBJLDA framework is used for the electronic structure calculations. (a) Averaged

electrostatic potentials (black curves) plotted along the c-axis, i.e., the [0001] direction. The

positions of the bulk band extrema Ec (in red), Eind
c (in grey) and Ev (in blue) are also given. (b)

The band lineups resulting with the electron affinity rule. The vacuum level is taken as energy

zero.
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FIG. 7. Band lineups at the interfaces of the hexagonal SinGe4−n/Sin+1Ge3−n (n = 0, 1, 2, 3) het-

erostructures as calculated by means of expression (4) and the energies and deformation potentials

in Table IV using the biaxial strains (3) from (a) the superlattice and (b) the macroscopic approach

in (6). The resulting strain values are listed in Table V.

35



−0.5

0

0.5

1

1.5
C1

CBM(ind)
CBM(dir)
VBM

−0.5

0

0.5

1

1.5

C2 C3 Average

S
i 0.

5G
e 0.

5

(a)

S
i 0.

25
G

e 0.
75

(b)

S
i 0.

5G
e 0.

5

S
i 0.

25
G

e 0.
75

S
i 0.

5G
e 0.

5

S
i 0.

25
G

e 0.
75

S
i 0.

5G
e 0.

5

S
i 0.

25
G

e 0.
75

E
ne

rg
y 

(e
V

)
E

ne
rg

y 
(e

V
)

BP

BP

FIG. 8. Zoom to heterostructures with layer compositions x = 0.25 or y = 0.5. Besides the average

result already displayed in Fig. 7 also band lineups for the defined atomic configurations C1, C2 and

C3 of the Si2Ge2 cells are plotted. The different biaxial strains used in (a) and (b) are estimated

as described in Fig. 7.

36


	Deliverable 4-3 Strain dependence
	Strain dependence  in hex-SiGe quantum wells
	Band lineup at hexagonal SixGe1-x/SiyGe1-y alloy interfaces
	Abstract
	I Introduction
	II Methods
	A Structural, elastic and electronic properties
	B Alloys and superlattices

	III Natural band discontinuities
	A Vacuum level alignment
	B  Branch point alignment
	C  Comparison of alignment methods

	IV True band lineup
	A Interfacial biaxial strain
	B Interface influence
	C  Band edges and confinement in strained heterostructures

	V Summary and conclusions
	 Acknowledgements
	 References
	 Figure Captions





